If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+71X-3162=0
a = 1; b = 71; c = -3162;
Δ = b2-4ac
Δ = 712-4·1·(-3162)
Δ = 17689
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{17689}=133$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(71)-133}{2*1}=\frac{-204}{2} =-102 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(71)+133}{2*1}=\frac{62}{2} =31 $
| 24=8m/5 | | X^2+10x-527=0 | | n-28=12 | | x+4x-4=9 | | 1/3(2x-1)-(2x+1)=1/12(2-x) | | 2-2x=8+x | | I+6+4r=126 | | 3/2+t=3/2 | | 10-3m=25 | | 81÷9(7+2)=x | | 2x+5+7x+3=2 | | 5(r-2)=2(r-4)-6 | | 7x+5=1+1x | | 8x-(9x+6)=7x-38 | | 5/9x+3=0 | | 10+10x=9x-27 | | c+48=67 | | 9+3n=5n+9 | | x-91=34 | | x-91=91 | | 12+m+36=200 | | 3−7*(3+4x)=-18 | | 75=1/2h(8+7) | | 5678+n=9034 | | 5x=(x+7) | | x+0,83*x=5,7 | | 17p–10+13+4p=21p+3 | | 1,2^5x=300 | | 6n-19=3n+26 | | 6/x-2=-5/x+2+13/(x-2)(x+2) | | 3D-10d=-35 | | -21w-6=-2 |